Elliptic partial differential equations (PDEs) with discontinuous diffusion
coefficients occur in application domains such as diffusions through porous
media, electro-magnetic field propagation on heterogeneous media, and diffusion
processes on rough surfaces. The standard approach to numerically treating such
problems using finite element methods is to assume that the discontinuities lie
on the boundaries of the cells in the initial triangulation. However, this does
not match applications where discontinuities occur on curves, surfaces, or
manifolds, and could even be unknown beforehand. One of the obstacles to
treating such discontinuity problems is that the usual perturbation theory for
elliptic PDEs assumes bounds for the distortion of the coefficients in the
L∞ norm and this in turn requires that the discontinuities are matched
exactly when the coefficients are approximated. We present a new approach based
on distortion of the coefficients in an Lq norm with q<∞ which
therefore does not require the exact matching of the discontinuities. We then
use this new distortion theory to formulate new adaptive finite element methods
(AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in
the sense of distortion versus number of computations, and report insightful
numerical results supporting our analysis.Comment: 24 page