The entropy maximum approach (Maxent) was developed as a minimization of the
subjective uncertainty measured by the Boltzmann--Gibbs--Shannon entropy. Many
new entropies have been invented in the second half of the 20th century. Now
there exists a rich choice of entropies for fitting needs. This diversity of
entropies gave rise to a Maxent "anarchism". Maxent approach is now the
conditional maximization of an appropriate entropy for the evaluation of the
probability distribution when our information is partial and incomplete. The
rich choice of non-classical entropies causes a new problem: which entropy is
better for a given class of applications? We understand entropy as a measure of
uncertainty which increases in Markov processes. In this work, we describe the
most general ordering of the distribution space, with respect to which all
continuous-time Markov processes are monotonic (the Markov order). For
inference, this approach results in a set of conditionally "most random"
distributions. Each distribution from this set is a maximizer of its own
entropy. This "uncertainty of uncertainty" is unavoidable in analysis of
non-equilibrium systems. Surprisingly, the constructive description of this set
of maximizers is possible. Two decomposition theorems for Markov processes
provide a tool for this description.Comment: 23 pages, 4 figures, Correction in Conclusion (postprint