Mixed pixels are presented in hyperspectral images due to low spatial
resolution of hyperspectral sensors. Spectral unmixing decomposes mixed pixels
spectra into endmembers spectra and abundance fractions. In this paper using of
robust statistics-based nonnegative matrix factorization (RNMF) for spectral
unmixing of hyperspectral data is investigated. RNMF uses a robust cost
function and iterative updating procedure, so is not sensitive to outliers.
This method has been applied to simulated data using USGS spectral library,
AVIRIS and ROSIS datasets. Unmixing results are compared to traditional NMF
method based on SAD and AAD measures. Results demonstrate that this method can
be used efficiently for hyperspectral unmixing purposes.Comment: 4 pages, conferenc