We present three-dimensional numerical simulations of a magnetic loop
evolving in either a convectively stable or unstable rotating shell. The
magnetic loop is introduced in the shell in such a way that it is buoyant only
in a certain portion in longitude, thus creating an \Omega-loop. Due to the
action of magnetic buoyancy, the loop rises and develops asymmetries between
its leading and following legs, creating emerging bipolar regions whose
characteristics are similar to the ones of observed spots at the solar surface.
In particular, we self-consistently reproduce the creation of tongues around
the spot polarities, which can be strongly affected by convection. We moreover
emphasize the presence of ring-shaped magnetic structures around our simulated
emerging regions, which we call "magnetic necklace" and which were seen in a
number of observations without being reported as of today. We show that those
necklaces are markers of vorticity generation at the periphery and below the
rising magnetic loop. We also find that the asymmetry between the two legs of
the loop is crucially dependent on the initial magnetic field strength. The
tilt angle of the emerging regions is also studied in the stable and unstable
cases and seems to be affected both by the convective motions and the presence
of a differential rotation in the convective cases.Comment: 23 pages (ApJ 2-column format), 19 figures, accepted for publication
in Ap