CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Sliding mode control of a pneumatic muscle actuator system with a PWM strategy
Authors
Bone GM
Ellman AU
+3 more
Gadsden SA
Habibi SR
Jouppila VT
Publication date
8 September 2024
Publisher
River Publishers
Doi
Abstract
In this paper, a sliding mode control (SMC) strategy is applied to a pulse width modulation (PWM)-driven pneumatic muscle actuator system using high speed on/off solenoid valves. Servo-pneumatic systems with PWM-driven on/off valves can be used instead of expensive servo valves to decrease complexity, weight, and cost of servo-pneumatic systems. Due to the highly nonlinear nature of pneumatics, the system is difficult to model accurately which leads to unmodelled dynamics and uncertainties. In this paper, a robust and nonlinear SMC approach is implemented in order to control the system with sufficient accuracy. A nonlinear model is developed in a single-input single-output form by studying the flow, pressure, and force dynamics of the system. The SMC strategy is applied to three different system configurations: single on/off valve, two on/off valves, and a servo valve. The performance and effectiveness of these configurations are investigated under sinusoidal tracking at different frequencies. The robustness of the controllers is studied by varying the inertia of the system and by applying external disturbances to the system. © 2014 Taylor & Francis
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
MacSphere (McMaster University)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:macsphere.mcmaster.ca:1137...
Last time updated on 10/02/2025