When we want to predict the future, we compute it from what we know about the
present. Specifically, we take a mathematical representation of observed
reality, plug it into some dynamical equations, and then map the time-evolved
result back to real-world predictions. But while this computational process can
tell us what we want to know, we have taken this procedure too literally,
implicitly assuming that the universe must compute itself in the same manner.
Physical theories that do not follow this computational framework are deemed
illogical, right from the start. But this anthropocentric assumption has
steered our physical models into an impossible corner, primarily because of
quantum phenomena. Meanwhile, we have not been exploring other models in which
the universe is not so limited. In fact, some of these alternate models already
have a well-established importance, but are thought to be mathematical tricks
without physical significance. This essay argues that only by dropping our
assumption that the universe is a computer can we fully develop such models,
explain quantum phenomena, and understand the workings of our universe. (This
essay was awarded third prize in the 2012 FQXi essay contest; a new afterword
compares and contrasts this essay with Robert Spekkens' first prize entry.)Comment: 10 pages with new afterword; matches published versio