research

Deviations of ergodic sums for toral translations II. Boxes

Abstract

We study the Kronecker sequence {nα}nN\{n\alpha\}_{n\leq N} on the torus Td{\mathbb T}^d when α\alpha is uniformly distributed on Td.{\mathbb T}^d. We show that the discrepancy of the number of visits of this sequence to a random box, normalized by lndN\ln^d N, converges as NN\to\infty to a Cauchy distribution. The key ingredient of the proof is a Poisson limit theorem for the Cartan action on the space of d+1d+1 dimensional lattices.Comment: 56 pages. This is a revised and expanded version of the prior submission

    Similar works