Water-metal interfaces are ubiquitous and play a key role in many chemical
processes, from catalysis to corrosion. Whereas water adlayers on atomically
flat transition metal surfaces have been investigated in depth, little is known
about the chemistry of water on stepped surfaces, commonly occurring in
realistic situations. Using first-principles simulations we study the
adsorption of water on a stepped platinum surface. We find that water adsorbs
preferentially at the step edge, forming linear clusters or chains, stabilized
by the cooperative effect of chemical bonds with the substrate and hydrogen
bonds. In contrast with flat Pt, at steps water molecules dissociate forming
mixed hydroxyl/water structures, through an autocatalytic mechanism promoted by
hydrogen bonding. Nuclear quantum effects contribute to stabilize partially
dissociated cluster and chains. Together with the recently demonstrated
attitude of water chains adsorbed on stepped Pt surfaces to transfer protons
via thermally activated hopping, these findings candidate these systems as
viable proton wires.Comment: 19 pages, 4 figure