research

Spin polarization and magnetoresistance through a ferromagnetic barrier in bilayer graphene

Abstract

We study spin dependent transport through a magnetic bilayer graphene nanojunction configured as two dimensional normal/ferromagnetic/normal structure where the gate-voltage is applied on the layers of ferromagnetic graphene. Based on the fourband Hamiltonian, conductance is calculated by using Landauer Butikker formula at zero temperature. For parallel configuration of the ferromagnetic layers of bilayer graphene, the energy band structure is metallic and spin polarization reaches to its maximum value close to the resonant states, while for antiparallel configuration, the nanojunction behaves as a semiconductor and there is no spin filtering. As a result, a huge magnetoresistance is achievable by altering the configurations of ferromagnetic graphene especially around the band gap

    Similar works

    Full text

    thumbnail-image

    Available Versions