In this article it is shown how optimized and dedicated microarray
experiments can be used to study the thermodynamics of DNA hybridization for a
large number of different conformations in a highly parallel fashion. In
particular, free energy penalties for mismatches are obtained in two
independent ways and are shown to be correlated with values from melting
experiments in solution reported in the literature. The additivity principle,
which is at the basis of the nearest-neighbor model, and according to which the
penalty for two isolated mismatches is equal to the sum of the independent
penalties, is thoroughly tested. Additivity is shown to break down for a
mismatch distance below 5 nt. The behavior of mismatches in the vicinity of the
helix edges, and the behavior of tandem mismatches are also investigated.
Finally, some thermodynamic outlying sequences are observed and highlighted.
These sequences contain combinations of GA mismatches. The analysis of the
microarray data reported in this article provides new insights on the DNA
hybridization parameters and can help to increase the accuracy of
hybridization-based technologies.Comment: 13 pages, 11 figures, 1 table, Supplementary Data available in
Appendi