research

Below All Subsets for Some Permutational Counting Problems

Abstract

We show that the two problems of computing the permanent of an n×nn\times n matrix of poly(n)\operatorname{poly}(n)-bit integers and counting the number of Hamiltonian cycles in a directed nn-vertex multigraph with exp(poly(n))\operatorname{exp}(\operatorname{poly}(n)) edges can be reduced to relatively few smaller instances of themselves. In effect we derive the first deterministic algorithms for these two problems that run in o(2n)o(2^n) time in the worst case. Classic poly(n)2n\operatorname{poly}(n)2^n time algorithms for the two problems have been known since the early 1960's. Our algorithms run in 2nΩ(n/logn)2^{n-\Omega(\sqrt{n/\log n})} time.Comment: Corrected several technical errors, added comment on how to use the algorithm for ATSP, and changed title slightly to a more adequate on

    Similar works

    Full text

    thumbnail-image