research

Convergence of nonlinear semigroups under nonpositive curvature

Abstract

The present paper is devoted to semigroups of nonexpansive mappings on metric spaces of nonpositive curvature. We show that the Mosco convergence of a sequence of convex lsc functions implies convergence of the corresponding resolvents and convergence of the gradient flow semigroups. This extends the classical results of Attouch, Brezis and Pazy into spaces with no linear structure. The same method can be further used to show the convergence of semigroups on a sequence of spaces, which solves a problem of [Kuwae and Shioya, Trans. Amer. Math. Soc., 2008].Comment: Accepted for publication in Trans. Amer. Math. So

    Similar works

    Full text

    thumbnail-image

    Available Versions