research

Approximating kk-Median via Pseudo-Approximation

Abstract

We present a novel approximation algorithm for kk-median that achieves an approximation guarantee of 1+3+ϵ1+\sqrt{3}+\epsilon, improving upon the decade-old ratio of 3+ϵ3+\epsilon. Our approach is based on two components, each of which, we believe, is of independent interest. First, we show that in order to give an α\alpha-approximation algorithm for kk-median, it is sufficient to give a \emph{pseudo-approximation algorithm} that finds an α\alpha-approximate solution by opening k+O(1)k+O(1) facilities. This is a rather surprising result as there exist instances for which opening k+1k+1 facilities may lead to a significant smaller cost than if only kk facilities were opened. Second, we give such a pseudo-approximation algorithm with α=1+3+ϵ\alpha= 1+\sqrt{3}+\epsilon. Prior to our work, it was not even known whether opening k+o(k)k + o(k) facilities would help improve the approximation ratio.Comment: 18 page

    Similar works

    Full text

    thumbnail-image

    Available Versions