We demonstrate a strong dependence of the effective damping on the nanomagnet
size and the particular spin-wave mode that can be explained by the theory of
intralayer transverse-spin-pumping. The effective Landau-Lifshitz damping is
measured optically in individual, isolated nanomagnets as small as 100 nm. The
measurements are accomplished by use of a novel heterodyne magneto-optical
microwave microscope with unprecedented sensitivity. Experimental data reveal
multiple standing spin-wave modes that we identify by use of micromagnetic
modeling as having either localized or delocalized character, described
generically as end- and center-modes. The damping parameter of the two modes
depends on both the size of the nanomagnet as well as the particular spin-wave
mode that is excited, with values that are enhanced by as much as 40% relative
to that measured for an extended film. Contrary to expectations based on the ad
hoc consideration of lithography-induced edge damage, the damping for the
end-mode decreases as the size of the nanomagnet decreases. The data agree with
the theory for damping caused by the flow of intralayer transverse
spin-currents driven by the magnetization curvature. These results have serious
implications for the performance of nanoscale spintronic devices such as
spin-torque-transfer magnetic random access memory.Comment: The manuscript is published in Physical Review Letters. We revised
the manuscript to meet the length requiremen