research

A Structured Systems Approach for Optimal Actuator-Sensor Placement in Linear Time-Invariant Systems

Abstract

In this paper we address the actuator/sensor allocation problem for linear time invariant (LTI) systems. Given the structure of an autonomous linear dynamical system, the goal is to design the structure of the input matrix (commonly denoted by BB) such that the system is structurally controllable with the restriction that each input be dedicated, i.e., it can only control directly a single state variable. We provide a methodology that addresses this design question: specifically, we determine the minimum number of dedicated inputs required to ensure such structural controllability, and characterize, and characterizes all (when not unique) possible configurations of the \emph{minimal} input matrix BB. Furthermore, we show that the proposed solution methodology incurs \emph{polynomial complexity} in the number of state variables. By duality, the solution methodology may be readily extended to the structural design of the corresponding minimal output matrix (commonly denoted by CC) that ensures structural observability.Comment: 8 pages, submitted for publicatio

    Similar works

    Full text

    thumbnail-image

    Available Versions