Electric field noise is a hinderance to the assembly of large scale quantum
computers based on entangled trapped ions. Apart from ubiquitous technical
noise sources, experimental studies of trapped ion heating have revealed
additional limiting contributions to this noise, originating from atomic
processes on the electrode surfaces. In a recent work [A. Safavi-Naini et al.,
Phys. Rev. A 84, 023412 (2011)] we described a microscopic model for this
excess electric field noise, which points a way towards a more systematic
understanding of surface adsorbates as progenitors of electric field jitter
noise. Here, we address the impact of surface monolayer contamination on
adsorbate induced noise processes. By using exact numerical calculations for H
and N atomic monolayers on an Au(111) surface representing opposite extremes of
physisorption and chemisorption, we show that an additional monolayer can
significantly affect the noise power spectrum and either enhance or suppress
the resulting heating rates.Comment: 8 pages, 5 figure