We investigate enhanced harmonic generation processes in gain-assisted,
near-zero permittivity metamaterials composed of spherical plasmonic
nanoshells. We report the presence of narrow-band features in transmission,
reflection and absorption induced by the presence of an active material inside
the core of the nanoshells. The damping-compensation mechanism used to achieve
the near-zero effective permittivity condition also induces a significant
increase in field localization and strength and, consequently, enhancement of
linear absorption. When only metal nonlinearities are considered, second and
third harmonic generation efficiencies obtained by probing the structure in the
vicinity of the near-zero permittivity condition approach values as high as for
irradiance value as low as . These results clearly demonstrate that a
relatively straightforward path now exists to the development of exotic and
extreme nonlinear optical phenomena in the KW/cm2 rang