research

The Maximum Traveling Salesman Problem with Submodular Rewards

Abstract

In this paper, we look at the problem of finding the tour of maximum reward on an undirected graph where the reward is a submodular function, that has a curvature of κ\kappa, of the edges in the tour. This problem is known to be NP-hard. We analyze two simple algorithms for finding an approximate solution. Both algorithms require O(V3)O(|V|^3) oracle calls to the submodular function. The approximation factors are shown to be 12+κ\frac{1}{2+\kappa} and max{23(2+κ),2/3(1κ)}\max\set{\frac{2}{3(2+\kappa)},2/3(1-\kappa)}, respectively; so the second method has better bounds for low values of κ\kappa. We also look at how these algorithms perform for a directed graph and investigate a method to consider edge costs in addition to rewards. The problem has direct applications in monitoring an environment using autonomous mobile sensors where the sensing reward depends on the path taken. We provide simulation results to empirically evaluate the performance of the algorithms.Comment: Extended version of ACC 2013 submission (including p-system greedy bound with curvature

    Similar works

    Full text

    thumbnail-image

    Available Versions