Multidisciplinary Digital Publishing Institute (MDPI)
Doi
Abstract
Background: The orthodontic management of pediatric patients with rare diseases, such as Ectodermal Dysplasia (ED) and Osteogenesis Imperfecta (OI), requires complex protocols due to dental anomalies in both the number and structure of teeth. These conditions necessitate a departure from traditional orthodontic approaches, as skeletal anchoring is often required because of these anomalies. Case Presentation: A patient with ED, characterized by hypodontia and malformed teeth, presented with insufficient natural teeth for anchorage. This challenge was addressed using a Maxillary Skeletal Expander (MSE) with miniscrews. Cone-beam computed tomography (CBCT) and cephalometric radiographs were used to assess bone density, which guided the creation of a customized hybrid device. A second patient with OI, a condition causing fragile bones, had malformed teeth and a high risk of fractures. Skeletal anchoring with MSE and miniscrews was chosen to avoid damaging brittle bones. The fragile nature of the patient’s bones required careful planning and close monitoring throughout the treatment process. Both patients were treated at the UOC of Pediatric Dentistry, Sapienza University of Rome, using MSE with miniscrews. Pre- and post-treatment imaging (CBCT and cephalometric radiographs) were used to evaluate bone quality and monitor progress. Skeletal anchoring successfully addressed the unique challenges in both cases, achieving outcomes comparable to those in unaffected patients. Discsussions: despite limited bone volume, MSE successfully achieved maxillary arch expansion and improved occlusion. Post-treatment radiographs showed successful maxillary expansion and alignment without complications. Conclusions: This case series highlighted the effectiveness of MSE with miniscrews in treating patients with rare diseases. It advances orthodontic management by offering reliable solutions for complex cases involving dental anomalies and compromised bone structures