An integrated research tool for X-ray imaging simulation

Abstract

This paper presents a software simulation package of the entire X-ray projection radiography process including beam generation, absorber structure and composition, irradiation set up, radiation transport through the absorbing medium, image formation and dose calculation. Phantoms are created as composite objects from geometrical or voxelized primitives and can be subjected to simulated irradiation process. The acquired projection images represent the two-dimensional spatial distribution of the energy absorbed in the detector and are formed at any geometry, taking into account energy spectrum, beam geometry and detector response. This software tool is the evolution of a previously presented system, with new functionalities, user interface and an expanded range of applications. This has been achieved mainly by the use of combinatorial geometry for phantom design and the implementation of a Monte Carlo code for the simulation of the radiation interaction at the absorber and the detector. © 2002 Published b

    Similar works

    Full text

    thumbnail-image

    Available Versions