Zn-MIL53(Fe) as an electro-Fenton catalyst: application in organic pollutant degradation and pathogen inactivation

Abstract

In this study, the potential of a bimetallic Metal-Organic Framework Zn-MIL53(Fe) for electro-Fenton catalysis was evaluated. After the material characterisation, its catalytic activity was validated in Fenton reaction to degrade a model organic pollutant: Rhodamine B. After that, the evaluation of Zn-MIL53(Fe) as electro-Fenton catalyst was performed and improved outcomes were reached by electro-Fenton regarding anodic oxidation. Then, electro-Fenton treatment optimisation was carried out using response surface methodology assays considering different catalyst dosages (7.2–43.2 mg), current intensities (5–45 mA) and treatment time (30–90 min) in a volume of 0.1 L. Under optimal conditions, a degradation rate over 90 % for Fluoxetine and Sulfamethoxazole in synthetic wastewater was achieved within 90 min, using graphite sheet as anode and nickel foam as cathode (25 mA), with a catalyst dosage of 43.2 mg in a volume of 0.1 L. Additionally, its application in the pathogen inactivation was evaluated using different gram-negative and gram-positive bacteria. Complete eliminations of both types of bacteria were reached in 5 min using the optimal conditions. In the end, Zn-MIL53(Fe) was proven as a reusable material, capable of performing 3 complete cycles of electro-Fenton treatment for both types of pollutants bacteria and pharmaceuticals, which makes it a promising candidate for more efficient wastewater treatment applications which involve the Fenton reaction.Agencia Estatal de Investigación | Ref. PID2020-113667GB-I00Xunta de Galicia | Ref. ED431C2021-43Universidade de Vigo/CISU

    Similar works