Abstract

The 3D Optical Systems Group at MIT investigates Nanostructured Origami TM 3D fabrication and assembly. The idea is to assemble complex hybrid (chemical or biological reactors, optical sensing, digital electronic logic, mechanical motion) systems in 3D by using exclusively 2D lithography technology. The 3D shape is obtained by folding the initial 2D membrane in a prescribed way, in a manner reminiscent of the Japanese art of origami (paper-folding). The patterning method (2D nanolithography, nanoimprinting and other techniques) as well as the actuation principle (Lorentz force actuation) which is responsible for initializing the folding process have already been developed and established. The knowledge of the dynamic folding process itself, needed to reach any desired 3D shape from a 2D initial state is to-date unexplored. Hence, the primary objective of this thesis is to determine the motions required to reach the goal (folded state) from a given initial state (unfolded). Hereto general folding operations will be analyzed and a new method to describe its kinematics for any arbitrary structure will be developed

    Similar works

    Full text

    thumbnail-image

    Available Versions