A modeling demonstration of the moderation of 14.1 MeV primary neutrons in beryllium emitted from a D-T fusion nuclear reaction. The energy deposited from neutron-beryllium interactions which produces heat in the blanket of a fusion tokamak. A review of literature and data available for neutron-beryllium interactions is provided to support the MC software of a simplified model of the ITER first wall and blanket. Energy deposited in regions of the model using FLUKA are used to calculate a polynomial heat flux profile through the model. One dimensional conductive heat transfer through the model is performed and the cooling capacity of the coolant channels via convective heat transfer is explored