Abstract

An adaptive modular approach to the mining of sensor network data. This paper proposes a two-layer modular architecture to adaptively perform data mining tasks in large sensor networks. The architecture consists in a lower layer which performs data aggregation in a modular fashion and in an upper layer which employs an adaptive local learning technique to extract a prediction model from the aggregated information. The rationale of the approach is that a modular aggregation of sensor data can serve jointly two purposes: first, the organization of sensors in clusters, then reducing the communication effort, second, the dimensionality reduction of the data mining task, then improving the accuracy of the sensing task

    Similar works

    Full text

    thumbnail-image

    Available Versions