The structure of residuated lattices

Abstract

Abstract. Residuation is a fundamental concept of ordered structures and categories. In this survey we consider the consequences of adding a residuated monoid operation to lattices. The resulting residuated lattices have been studied in several branches of mathematics, including the areas of lattice-ordered groups, ideal lattices of rings, linear logic and multi-valued logic. Our exposition aims to cover basic results and current developments, concentrating on the algebraic structure, the lattice of varieties, and decidability. We end with a list of open problems that we hope will stimulate further research.

    Similar works

    Full text

    thumbnail-image

    Available Versions