Abstract

A flight flutter experiment at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center, Edwards, California, used an 18-inch half-span composite model called the Aerostructures Test Wing (ATW). The ATW was mounted on a centerline flight test fixture on the NASA F-15B and used distributed piezoelectric strain actuators for in-flight structural excitation. The main focus of this paper is to investigate the performance of the piezoelectric actuators and test their ability to excite the first-bending and first-torsion modes of the ATW on the ground and in-flight. On the ground, wing response resulting from piezoelectric and impact excitation was recorded and compared. The comparison shows less than a 1-percent difference in modal frequency and a 3-percent increase in damping. A comparison of in-flight response resulting from piezoelectric excitation and atmospheric turbulence shows that the piezoelectric excitation consistently created an increased response in the wing throughout the flight envelope tested. The data also showed that to obtain a good correlation between the piezoelectric input and the wing accelerometer response, the input had to be nearly 3.5 times greater than the turbulence excitation on the wing

    Similar works

    Full text

    thumbnail-image

    Available Versions