UNDERSTANDING OBJECT FEATURE BINDING THROUGH EXPERIMENTATION AS A PRECURSOR TO MODELLING

Abstract

In order to explore underlying brain mechanisms and to further understand how and where object feature binding occurs, psychophysical data are analysed and will be modelled using an attractor network. This paper describes psychophysical work and an outline of the proposed model. A rapid serial visual processing paradigm with a post-cue response task was used in three experimental conditions: spatial, temporal and spatio-temporal. Using a ‘staircase ’ procedure, stimulus onset asynchrony for each observer for each condition was set in practice trails to achieve ~50 % error rates. Results indicate that spatial location information helps bind objects features and temporal location information hinders it. Our expectation is that the proposed neural model will demonstrate a binding mechanism by exhibiting regions of enhanced activity in the location of the target when presented with a partial post-cue. In future work, the model could be lesioned so that neuropsychological phenomena might be exhibited. In such a way, the mechanisms underlying object feature binding might be clarified.

    Similar works

    Full text

    thumbnail-image

    Available Versions