BIFURCATION ANALYSIS OF PERIODIC ORBITS OF MAPS IN MATLAB

Abstract

Abstract. We discuss new and improved algorithms for the bifurcation analysis of fixed points and periodic orbits (cycles) of maps and their implementation in matcont, a matlab toolbox for continuation and bifurcation analysis of dynamical systems. This includes the numerical continuation of fixed points of iterates of the map with one control parameter, detecting and locating their bifurcation points (i.e., LP, PD and NS), and their continuation in two control parameters, as well as detection and location of all codimension 2 bifurcation points on the corresponding curves. For all bifurcations of codim 1 and 2, the critical normal form coefficients are computed, both numerically with finite directional differences and using symbolic derivatives of the original map. Using a parameter-dependent center manifold reduction, explicit asymptotics are derived for bifurcation curves of double and quadruple period cycles rooted at codim 2 points of cycles with arbitrary period. These asymptotics are implemented into the software and allow one to switch at codim 2 points to the continuation of the double and quadruple period bifurcations. We provide several examples, in particular a juvenile/adult Leslie–Gower competition model from mathematical biology. Key words. bifurcations of fixed points, cycles, normal forms, branch switchin

    Similar works

    Full text

    thumbnail-image

    Available Versions