TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

Abstract

In this paper, we are interested in the computational complexity of computing (dis)simila-rity measures between two genomes when they contain duplicated genes or genomic markers, a problem that happens frequently when comparing whole nuclear genomes. Recently, several methods ( [1], [2]) have been proposed that are based on two steps to compute a given (dis)similarity measure M between two genomes G1 and G2: first, one establishes a one-to-one correspondence between genes of G1 and genes of G2; second, once this correspondence is established, it defines explicitly a permutation and it is then possible to quantify their similarity using classical measures defined for permutations, like the number of breakpoints. Hence these methods rely on two elements: a way to establish a one-to-one correspondence between genes of a pair of genomes, and a (dis)similarity measure for permutations. The problem is then, given a (dis)similarity measure for permutations, to compute a correspondence that defines an optimal permutation for this measure. We are interested here in two models to compute a one-to-one correspondence: the exemplar model, where all but one copy ar

    Similar works

    Full text

    thumbnail-image

    Available Versions