Abstract

Introduction Crawling cells move by using the actin cytoskeleton to power a simple mechanical cycle whereby the leading edge protrudes and adheres to the substratum. The cell body is then pulled forward in a process generally called retraction (Abercrombie, 1980; Roberts and Stewart, 2000). Delineating the mechanochemical events that drive this cycle has proven elusive because of the large number of proteins involved in cell locomotion and the intricacy of the intracellular control system. Moreover, the involvement of actin in a range of other cellular functions, such as endo- and exocytosis, trafficking and maintenance of cell shape, has frustrated the interpretation of many experiments. Therefore, we have focused on a simple and specialized cell: the sperm of a nematode, Ascaris suum. In these cells, the locomotion machinery is dramatically simplified, thereby providing a unique and powerful perspective for evaluating the molecular mechanism of cell crawling (Italiano et al., 2001

    Similar works

    Full text

    thumbnail-image

    Available Versions