A Programmable Processor with 4096 Processing Units for Media Applications

Abstract

Over the past few years, technology drivers for processor designs have changed significantly. Media data delivery and processing -- such as telecommunications, networking, video processing, speech recognition and 3D graphics -- is increasing in importance and will soon dominate the processing cycles consumed in computer-based systems. This paper describes a processo, called Linedancer, that provides high media performance with low energy consumption by integrating associative SIMD parallel processing with embedded microprocessor technology. The major innovations in the Linedancer is the integration of thousands of processing units in a single chip that are capable to support software programmable high-performance mathematical functions as well as abstract data processing. In addition to 4096 processing units, Linedancer integrates on a single chip a RISC controller that is an implementation of the SPARC architecture, 128 Kbytes of Data Memory, and I/O interfaces. The SIMD processing in Linedancer implements the ASProCore architecture, which is a proprietary implementation of SIMD processing, operates at 266 MHz with program instructions issued by the RISC controller. The device also integrates a 64-bit synchronous main memory interface operating at 133 MHZ (double-data rate, DDR), and a 64-bit 66 MHz PCI interface

    Similar works

    Full text

    thumbnail-image

    Available Versions