research

Multiparametric Spectroscopic Photoacoustic Imaging of Breast Cancer Development in a Transgenic Mouse Model

Abstract

licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2014.06.16; Accepted: 2014.07.29; Published: 2014.08.15 Objective: To evaluate the potential of multiparametric spectroscopic photoacoustic imaging using oxygen saturation, total hemoglobin, and lipid content to differentiate among four different breast histologies (normal, hyperplasia, ductal carcinoma in situ (DCIS), and invasive breast carcinoma) in a transgenic mouse model of breast cancer development. Materials and Methods: Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mammary glands (n=251) of a transgenic mouse model of breast cancer development (FVB/N-Tg(MMTV-PyMT)634Mul) were imaged using B-mode ultrasound and spectroscopic photoacoustic imaging, analyzed for oxygen saturation, total hemoglobin, and lipid content, and processed for histological analysis. Statistical analysis was performed using one-way ANOVA, two-sample t-tests, logistic regression, and ROC analysis. Results: Eighty-two normal, 12 hyperplastic, 96 DCIS, and 61 invasive breast carcinoma mammary glands were analyzed. Based on spectroscopic photoacoustic imaging, the oxygen saturation o

    Similar works