research

CSIRO Marine and Atmospheric Research, 2

Abstract

With over 84 % of Australians living in urban areas (populations over 30,000), the outcome of the current debate on water use in cities and how to match water demand to supply under both current and future climates, has the potential to affect many Australians. Lacking in this debate is a sound quantitative basis for assessing the environmental and economic benefits of water use in urban areas. As an example, while water sensitive urban design (WSUD) is widely accepted as a tool to manage the impacts of urbanisation by careful design at the house and street scale, its focus has largely been on managing and re-using the runoff (stormwater and wastewater) component of the water balance. Much less attention has been paid to the role of urban evapotranspiration (ET) by urban hydrologists, even though this it is often the biggest output in the water balance. Evapotranspiration is the process that links the movement of water through a landscape with the local climate, with the process using energy that would otherwise contribute to elevated air temperatures. This passive control of the local climate via urban vegetation and ET has a direct influence on quantities of energy used in space heating and cooling through the role of urban ET and also because trees provide shade and shelter. This link between the urban water and energy balances, and microclimate, is demonstrated by considering the following simplified expressions for i) the urban water balance: P+ I = ET + D+ΔS (1) where the inputs are: P = precipitation; I = piped water supply (for external and internal uses); and the outputs are: ET = urban evapotranspiration; D = stormwater and wastewater; ΔS = change in stored water on and within the surface materials; and ii) the urban energy balance: Q + QF = QH + QE +ΔQ

    Similar works