research

QUALITE DES MODELES NUMERIQUES DE TERRAIN DERVIES PAR CORRELATION AUTOMATIQUE

Abstract

Digital Terrain Models are plying an important role as information layer, mainly with the development of geographic information systems, since they describe the topographic surface of the terrain and hence it constitutes a valuable support for the study of variety of geographical and environmental events. With the advent of digital techniques and the advantages they are offering in terms of automation and precision, users are adopting image matching techniques to derive automatically Digital Terrain Models. The quality of these DTM are determined by different factors (photo scale, scanning resolution and software parameterization). This paper is a contribution to evaluate the influence of some of some factors on the final accuracy of DTM derived by correlation. In this respect, different tests were carried out on two photo scales (1/7500 an 1/20000) flown on varying topography. The photos were scanned to 20, 25, 32 and 42 microns pixel sizes and digital terrain models were derived using ViruoZo software from Supresoft. The assessment of the derived DTMs quality was based on qualitative (visual comparisons of contours) and quantitative ( RMS computed from residuals on ground check points) criteria. Results showed that, in rugged terrain, DTM derived from 1/20000 photos are accurate to 32cm, which may enable deriving contours with 1 m interval. The introduction of break lines prior to the correlation seems to have less influence on the accuracy of derived DTM when the generated grid is very dense, but contributes to reduce the editing burden. The high accuracy of automatically derived DTM may contribute to make less tight the map to photo scale ratio. For instance mapping at 1/5000 from 1/20000 photos can preserve the height accuracy, while with conventional methods, height accuracy at 1/5000 map scale is preserved usually for mapping from 1/12000. 1

    Similar works