The detection and estimation of long memory in stochastic volatility

Abstract

We propose a new time series representation of persistence in conditional variance called a long memory stochastic volatility (LMSV) model. The LMSV model is constructed by incorporating an ARFIMA process in a standard stochastic volatility scheme. Strongly consistent estimators of the parameters of the model are obtained by maximizing the spectral approximation to the Gaussian likelihood. The finite sample properties of the spectral likelihood estimator are analyzed by means of a Monte Carlo study. An empirical example with a long time series of stock prices demonstrates the superiority of the LMS

    Similar works

    Full text

    thumbnail-image

    Available Versions