AbstractIn this paper, the content popularity prediction problem in cache-enabled fog radio access networks (F-RANs) is investigated. In order to predict the content popularity with high accuracy and low complexity, we propose a Gaussian process based Poisson regressor to model the content request pattern. Firstly, the relationship between content features and popularity is captured by our developed model. Then, we utilize Bayesian learning to learn the model parameters, which are robust to over-fitting. However, Bayesian methods are usually unable to find a closed-form expression of the posterior distribution. To tackle this issue, we apply a Stochastic Variance Reduced Gradient Hamiltonian Monte Carlo (SVRG-HMC) to approximate the posterior distribution. Two types of predictive content popularity are formulated for the requests of existing contents and newly-added contents. Simulation results show that the performance of our proposed policy outperforms the policy based on other Monte Carlo based method.Abstract
In this paper, the content popularity prediction problem in cache-enabled fog radio access networks (F-RANs) is investigated. In order to predict the content popularity with high accuracy and low complexity, we propose a Gaussian process based Poisson regressor to model the content request pattern. Firstly, the relationship between content features and popularity is captured by our developed model. Then, we utilize Bayesian learning to learn the model parameters, which are robust to over-fitting. However, Bayesian methods are usually unable to find a closed-form expression of the posterior distribution. To tackle this issue, we apply a Stochastic Variance Reduced Gradient Hamiltonian Monte Carlo (SVRG-HMC) to approximate the posterior distribution. Two types of predictive content popularity are formulated for the requests of existing contents and newly-added contents. Simulation results show that the performance of our proposed policy outperforms the policy based on other Monte Carlo based method