CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Accelerometers used in the measurement of jerk, snap, and crackle
Authors
D Eager
Publication date
1 January 2019
Publisher
Abstract
© 2019 Australian Acoustical Society Annual Conference, AAS 2018. All rights reserved. Accelerometers are traditionally used in acoustics for the measurement of vibration. Higher derivatives of motion are rarely considered when measuring vibration. This paper presents a novel usage of a triaxial accelerometer to measure acceleration and use these data to explain jerk and higher derivatives of motion. We are all familiar with the terms displacement, velocity and acceleration but few of us are familiar with the term jerk and even fewer of us are familiar with the terms snap and crackle. We experience velocity when we are displaced with respect to time and acceleration when we change our velocity. We do not feel velocity, but rather the change of velocity i.e. acceleration which is brought about by the force exerted on our body. Similarly, we feel jerk and higher derivatives when the force on our body experiences changes abruptly with respect to time. The results from a gymnastic trampolinist where the acceleration data were collected at 100 Hz using a device attached to the chest are presented and discussed. In particular the higher derivates of the Force total equation are extended and discussed, namely: ijerk∙d3x/dt3, rsnap∙d4x/dt4, ncrackle∙d5x/dt5 etc
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019