CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Treatment of high salinity waste water from shale gas exploitation by forward osmosis processes
Authors
G Chen
T He
XM Li
HK Shon
Publication date
1 January 2015
Publisher
'American Society of Civil Engineers (ASCE)'
Doi
Cite
Abstract
© 2015 by the American Society of Civil Engineers. All Rights Reserved. This chapter reviews state-of-the-art treatment of shale-gas-produced water with a focus on the treatment of shale-gas flow-back water (SGW) by forward osmosis (FO). It briefly introduces the origin and chemical/physical characteristics of SGW. Management of shale-gas wastewater depends on multidimensional criteria, e.g., local regulations, site conditions, water quality, and economic feasibility. Approaches used to treat high-salinity wastewater include deep well injection, transport and centralized treatment, treatment and disposal, and reuse. The chapter analyzes the advantages and limitations of potential treatments methods and summarizes the process parameters and selection of membrane and draw solutions. Studies were performed to examine the effectiveness of FO in treating high-salinity wastewater produced from shale-gas exploitation. The chapter discusses the potential for using the FO process to treat SGW on a large scale
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1061%2F97807844140...
Last time updated on 03/08/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019