CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Multivariate adaptive regression splines models for vehicular emission prediction
Authors
H Duc
QP Ha
+3 more
G Hong
S Metia
SD Oduro
Publication date
10 June 2015
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
© 2015, Oduro et al. Background: Rate models for predicting vehicular emissions of nitrogen oxides (NO X) are insensitive to the vehicle modes of operation, such as cruise, acceleration, deceleration and idle, because these models are usually based on the average trip speed. This study demonstrates the feasibility of using other variables such as vehicle speed, acceleration, load, power and ambient temperature to predict (NO X) emissions to ensure that the emission inventory is accurate and hence the air quality modelling and management plans are designed and implemented appropriately. Methods: We propose to use the non-parametric Boosting-Multivariate Adaptive Regression Splines (B-MARS) algorithm to improve the accuracy of the Multivariate Adaptive Regression Splines (MARS) modelling to effectively predict NO X emissions of vehicles in accordance with on-board measurements and the chassis dynamometer testing. The B-MARS methodology is then applied to the NO X emission estimation. Results: The model approach provides more reliable results of the estimation and offers better predictions of NO X emissions. Conclusion: The results therefore suggest that the B-MARS methodology is a useful and fairly accurate tool for predicting NO X emissions and it may be adopted by regulatory agencies
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1186%2Fs40327-015-...
Last time updated on 27/03/2019
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017
Springer - Publisher Connector
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 04/06/2019