CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Community detection based on links and node features in social networks
Authors
A. Pothen
D.M.. Blei
+5 more
J. Xie
J.M. Kleinberg
M. Girvan
S.. Fortunato
S.C. Deerwester
Publication date
1 January 2015
Publisher
Doi
Abstract
© Springer International Publishing Switzerland 2015. Community detection is a significant but challenging task in the field of social network analysis. Many effective methods have been proposed to solve this problem. However, most of them are mainly based on the topological structure or node attributes. In this paper, based on SPAEM [1], we propose a joint probabilistic model to detect community which combines node attributes and topological structure. In our model, we create a novel feature-based weighted network, within which each edge weight is represented by the node feature similarity between two nodes at the end of the edge. Then we fuse the original network and the created network with a parameter and employ expectation-maximization algorithm (EM) to identify a community. Experiments on a diverse set of data, collected from Facebook and Twitter, demonstrate that our algorithm has achieved promising results compared with other algorithms
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1007%2F978-3-319-1...
Last time updated on 03/08/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017