CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Cyclic-di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in lactococcus lactis
Authors
N Bansal
A Chakrabortti
+12 more
WM Huston
ZX Liang
R Lo
E Marcellin
THN Nhiep
LK Nielsen
TH Pham
MS Turner
NMT Vu
J Waanders
Y Wang
Y Zhu
Publication date
1 March 2016
Publisher
'Wiley'
Doi
Abstract
© 2016 John Wiley & Sons Ltd. The second messenger cyclic-di-adenosine monophosphate (c-di-AMP) plays important roles in growth, virulence, cell wall homeostasis, potassium transport and affects resistance to antibiotics, heat and osmotic stress. Most Firmicutes contain only one c-di-AMP synthesizing diadenylate cyclase (CdaA); however, little is known about signals and effectors controlling CdaA activity and c-di-AMP levels. In this study, a genetic screen was employed to identify components which affect the c-di-AMP level in Lactococcus. We characterized suppressor mutations that restored osmoresistance to spontaneous c-di-AMP phosphodiesterase gdpP mutants, which contain high c-di-AMP levels. Loss-of-function and gain-of-function mutations were identified in the cdaA and gdpP genes, respectively, which led to lower c-di-AMP levels. A mutation was also identified in the phosphoglucosamine mutase gene glmM, which is commonly located within the cdaA operon in bacteria. The glmM I154F mutation resulted in a lowering of the c-di-AMP level and a reduction in the key peptidoglycan precursor UDP-N-acetylglucosamine in L. lactis. C-di-AMP synthesis by CdaA was shown to be inhibited by GlmMI154F more than GlmM and GlmMI154F was found to bind more strongly to CdaA than GlmM. These findings identify GlmM as a c-di-AMP level modulating protein and provide a direct connection between c-di-AMP synthesis and peptidoglycan biosynthesis. c-di-AMP is an essential signalling molecule which affects peptidoglycan homeostasis and resistance against various stressors, however little is known regarding how the c-di-AMP level is regulated in the cell. Here we identify the peptidoglycan biosynthesis enzyme GlmM as a modulator of c-di-AMP synthesis through its regulation of diadenylate cyclase enzyme CdaA activity in Lactococcus lactis
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017