CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
On the achievable throughput of cooperative vehicular networks
Authors
J Chen
C Li
G Mao
A Zafar
Publication date
12 July 2016
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
© 2016 IEEE. Due to the time-varying channel conditions and dynamic topology of vehicular networks attributable to the high mobility of vehicles, data dissemination in vehicular networks, especially for content of large-size, is challenging. In this paper, we propose a cooperative communication strategy for vehicular networks suitable for dissemination of large-size content and investigate its achievable throughput. The proposed strategy exploits the cooperation of vehicle-to-infrastructure (V2I) communications, vehicle-to-vehicle (V2V) communications and the mobility of vehicles to facilitate the transmission. Detailed analysis is provided to characterize the data dissemination process using this strategy and a closed-form result is obtained on its achievable throughput, which reveals the relationship between major performance-impacting parameters such as distance between infrastructure, radio ranges of infrastructure and vehicles, transmission rates of V2I and V2V communications and vehicular density. Simulation and numerical results show that the proposed strategy significantly increases the throughput of vehicular networks even when the traffic density is low. The result also gives insight into the optimum deployment of vehicular network infrastructure to maximize throughput
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Ficc.2016.75...
Last time updated on 17/03/2019