CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
An EEG-Based Fatigue Detection and Mitigation System
Authors
CH Chuang
KC Huang
+5 more
TY Huang
TP Jung
JT King
CT Lin
YK Wang
Publication date
27 April 2016
Publisher
'World Scientific Pub Co Pte Lt'
Doi
Abstract
© 2016 World Scientific Publishing Company. Research has indicated that fatigue is a critical factor in cognitive lapses because it negatively affects an individual's internal state, which is then manifested physiologically. This study explores neurophysiological changes, measured by electroencephalogram (EEG), due to fatigue. This study further demonstrates the feasibility of an online closed-loop EEG-based fatigue detection and mitigation system that detects physiological change and can thereby prevent fatigue-related cognitive lapses. More importantly, this work compares the efficacy of fatigue detection and mitigation between the EEG-based and a nonEEG-based random method. Twelve healthy subjects participated in a sustained-attention driving experiment. Each participant's EEG signal was monitored continuously and a warning was delivered in real-time to participants once the EEG signature of fatigue was detected. Study results indicate suppression of the alpha-and theta-power of an occipital component and improved behavioral performance following a warning signal; these findings are in line with those in previous studies. However, study results also showed reduced warning efficacy (i.e. increased response times (RTs) to lane deviations) accompanied by increased alpha-power due to the fluctuation of warnings over time. Furthermore, a comparison of EEG-based and nonEEG-based random approaches clearly demonstrated the necessity of adaptive fatigue-mitigation systems, based on a subject's cognitive level, to deliver warnings. Analytical results clearly demonstrate and validate the efficacy of this online closed-loop EEG-based fatigue detection and mitigation mechanism to identify cognitive lapses that may lead to catastrophic incidents in countless operational environments
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1142%2Fs0129065716...
Last time updated on 14/11/2020
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017