CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
A new LMI-based robust Sliding Mode Control for the uncertain discrete-time systems
Authors
A Argha
L Li
H Nguyen
SW Su
Publication date
1 January 2014
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Cite
Abstract
© 2014 IEEE. In this paper, a new approach for designing a robust Discrete-time Sliding Mode Control (DSMC) is proposed for the uncertain discrete-time systems. To this end, an LMI approach is used to develop a new framework to design the linear sliding functions which are linear to the state. The LMI approach proposed in this paper is designed to deal with uncertain systems (matched and unmatched). It is wellknown that the finite sampling rate for the discrete-time systems leads to this fact that state move within a bound around the predetermined sliding surface referred to as quasi-sliding mode band. In this paper, this matter will be discussed in a new point of view and an innovative method will be used to obtain the ultimate bound on the system state
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Fcdc.2014.70...
Last time updated on 03/08/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017