CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Leveraging graph dimensions in online graph search
Authors
L Qin
JX Yu
Y Zhu
Publication date
1 January 2014
Publisher
'VLDB Endowment'
Doi
Abstract
Graphs have been widely used due to its expressive power to model complicated relationships. However, given a graph database DG = {g1; g2; ··· , gn}, it is challenging to process graph queries since a basic graph query usually involves costly graph operations such as maximum common subgraph and graph edit distance computation, which are NP-hard. In this paper, we study a novel DS-preserved mapping which maps graphs in a graph database DG onto a multidimensional space MG under a structural dimension Musing a mapping function φ(). The DS-preserved mapping preserves two things: distance and structure. By the distance-preserving, it means that any two graphs gi and gj in DG must map to two data objects φ(gi) and φ(gj) in MG, such that the distance, d(φ(gi); φ(gj), between φ(gi) and φ(gj) in MG approximates the graph dissimilarity δ(gi; gj) in DG. By the structure-preserving, it further means that for a given unseen query graph q, the distance between q and any graph gi in DG needs to be preserved such that δ(q; gi) ≈ d(φ(q); φ(gi)). We discuss the rationality of using graph dimension M for online graph processing, and show how to identify a small set of subgraphs to form M efficiently. We propose an iterative algorithm DSPM to compute the graph dimension, and discuss its optimization techniques. We also give an approximate algorithm DSPMap in order to handle a large graph database. We conduct extensive performance studies on both real and synthetic datasets to evaluate the top-k similarity query which is to find top-k similar graphs from DG for a query graph, and show the effectiveness and efficiency of our approaches. © 2014 VLDB
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.14778%2F2735461.27...
Last time updated on 05/06/2019