CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Robust textual data streams mining based on continuous transfer learning
Authors
L Cao
Z Hao
+3 more
B Liu
Y Xiao
PS Yu
Publication date
1 January 2013
Publisher
Doi
Cite
Abstract
Copyright © SIAM. In textual data stream environment, concept drift can occur at any time, existing approaches partitioning streams into chunks can have problem if the chunk boundary does not coincide with the change point which is impossible to predict. Since concept drift can occur at any point of the streams, it will certainly occur within chunks, which is called random concept drift. The paper proposed an approach, which is called chunk level-based concept drift method (CLCD), that can overcome this chunking problem by continuously monitoring chunk characteristics to revise the classifier based on transfer learning in positive and unlabeled (PU) textual data stream environment. Our proposed approach works in three steps. In the first step, we propose core vocabulary-based criteria to justify and identify random concept drift. In the second step, we put forward the extension of LELC (PU learning by extracting likely positive and negative microclusters)[ 1], called soft-LELC, to extract representative examples from unlabeled data, and assign a confidence score to each extracted example. The assigned confidence score represents the degree of belongingness of an example towards its corresponding class. In the third step, we set up a transfer learning-based SVM to build an accurate classifier for the chunks where concept drift is identified in the first step. Extensive experiments have shown that CLCD can capture random concept drift, and outperforms state-of-the-art methods in positive and unlabeled textual data stream environments
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1137%2F1.978161197...
Last time updated on 22/07/2021