CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Improving dental care recommendation systems using trust and social networks
Authors
V Gay
S Nepal
S Pradhan
Publication date
1 January 2014
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
The growing popularity of Health Social Networking sites has a tremendous impact on people's health related experiences. However, without any quality filtering, there could be a detrimental effect on the users' health. Trust-based techniques have been identified as effective methods to filter the information for recommendation systems. This research focuses on dental care related social networks and recommendation systems. Trust is critical when choosing a dental care provider due to the invasive nature of the treatment. Surprisingly, current dental care recommendation systems do not use trust-based techniques, and most of them are simple reviews and ratings sites. This research aims at improving dental care recommendation systems by proposing a new framework, taking trust into account. It derives trust from both users' social networks and from existing crowdsourced information on dental care. Such a framework could be used for other healthcare recommendation systems where trust is of major importance. © 2014 IEEE
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Ficc.2014.68...
Last time updated on 22/07/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017