CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Optimal designs for stated choice experiments generated from fractional factorial designs
Authors
S Bush
Publication date
24 March 2014
Publisher
'Informa UK Limited'
Doi
Cite
Abstract
This article gives optimal designs obtained by developing a fractional factorial design for the estimation of main effects in stated choice experiments under the assumption of equal selection probabilities. This construction approach follows that of Burgess and Street (2005), who develop complete factorial designs to construct optimal designs for choice experiments, but we obtain choice experiments with fewer choice sets. We construct the fractional factorial designs using the Rao-Hamming method, which assumes all attributes have the same number of levels, which must be a prime or a prime power. We also find optimal designs for stated choice experiments that are generated from asymmetric fractional factorial designs constructed using expansive replacement under the same assumption. We use the multinomial logit model to analyze the results, and we make the assumption of equal selection probabilities when calculating optimality properties. The methods that we use to implement these constructions are given in the last section. Copyright © Grace Scientific Publishing, LLC
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1080%2F15598608.20...
Last time updated on 10/12/2020