CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Quantifying the effects of elevated CO<inf>2</inf> on water budgets by combining FACE data with an ecohydrological model
Authors
L Cheng
D Eamus
+3 more
YP Wang
Q Yu
L Zhang
Publication date
1 January 2014
Publisher
'Wiley'
Doi
Cite
Abstract
© 2014 John Wiley & Sons, Ltd. Response of leaf area index (LAI) is the key determinant for predicting impacts of the elevated CO 2 (eCO 2 ) on water budgets. Importance of the changes in functional attributes of vegetation associated with eCO 2 for predicting responses of LAI has rarely been addressed. In this study, the WAter Vegetation Energy and Solute (WAVES) model was applied to simulate ecohydrological effects of the eCO 2 at two free-air CO 2 enrichment (FACE) experimental sites with contrasting vegetation. One was carried out by the Oak Ridge National Laboratory on the forest (ORNL FACE). The other one was conducted by the University of Minnesota on the grass (BioCON FACE). Results demonstrated that changes in functional attributes of vegetation (including reduction in specific leaf area, changes in carbon assimilation and allocation characteristics) and availability of nutrients are important for reproducing the responses of LAI, transpiration and soil moisture at both sites. Predicted LAI increased slightly at both sites because of fertilization effects of the eCO 2 . Simulated transpiration decreased 10·5% at ORNL site and 13·8% at BioCON site because of reduction in the stomatal conductance. Predicted evaporation from interception and soil surface increased slightly ( < 1·0mmyear -1 ) at both sites because of increased LAI and litter production, and increased soil moisture resulted from reduced transpiration. All components of run-off were predicted to increase because of significant decrease in transpiration. Simulated mean annual evapotranspiration decreased about 8·7% and 10·8%, and mean annual run-off increased about 11·1% (59·3mmyear -1 ) and 9·5% (37·6mmyear -1 ) at the ORNL and BioCON FACE sites, respectively
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1002%2Feco.1478
Last time updated on 13/11/2020
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017