CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
The learnability of unknown quantum measurements
Authors
HC Cheng
MH Hsieh
PC Yeh
Publication date
3 January 2015
Publisher
View
on
arXiv
Abstract
© Rinton Press. In this work, we provide an elegant framework to analyze learning matrices in the Schatten class by taking advantage of a recently developed methodology—matrix concentration inequalities. We establish the fat-shattering dimension, Rademacher/Gaussian complexity, and the entropy number of learning bounded operators and trace class operators. By characterising the tasks of learning quantum states and two-outcome quantum measurements into learning matrices in the Schatten-1 and ∞ classes, our proposed approach directly solves the sample complexity problems of learning quantum states and quantum measurements. Our main result in the paper is that, for learning an unknown quantum measurement, the upper bound, given by the fat-shattering dimension, is linearly proportional to the dimension of the underlying Hilbert space. Learning an unknown quantum state becomes a dual problem to ours, and as a byproduct, we can recover Aaronson’s famous result [Proc. R. Soc. A 463, 3089–3144 (2007)] solely using a classical machine learning technique. In addition, other famous complexity measures like covering numbers and Rademacher/Gaussian complexities are derived explicitly under the same framework. We are able to connect measures of sample complexity with various areas in quantum information science, e.g. quantum state/measurement tomography, quantum state discrimination and quantum random access codes, which may be of independent interest. Lastly, with the assistance of general Bloch-sphere representation, we show that learning quantum measurements/states can be mathematically formulated as a neural network. Consequently, classical ML algorithms can be applied to efficiently accomplish the two quantum learning tasks
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017